AmtB is necessary for NH(4)(+)-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus.

نویسندگان

  • Alexander F Yakunin
  • Patrick C Hallenbeck
چکیده

Rhodobacter capsulatus possesses two genes potentially coding for ammonia transporters, amtB and amtY. In order to better understand their role in the physiology of this bacterium and their possible significance in nitrogen fixation, we created single-knockout mutants. Strains mutated in either amtB or amtY did not show a growth defect under any condition tested and were still capable of taking up ammonia at nearly wild-type rates, but an amtB mutant was no longer capable of transporting methylamine. The amtB strain but not the amtY strain was also totally defective in carrying out ADP-ribosylation of Fe-protein or the switch-off of in vivo nitrogenase activity in response to NH(4)(+) addition. ADP-ribosylation in response to darkness was unaffected in amtB and amtBY strains, and glutamine synthetase activity was normally regulated in these strains in response to ammonium addition, suggesting that one role of AmtB is to function as an ammonia sensor for the processes that regulate nitrogenase activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus.

In most bacteria, nitrogen metabolism is tightly regulated and P(II) proteins play a pivotal role in the regulatory processes. Rhodobacter capsulatus possesses two genes (glnB and glnK) encoding P(II)-like proteins. The glnB gene forms part of a glnB-glnA operon and the glnK gene is located immediately upstream of amtB, encoding a (methyl-) ammonium transporter. Expression of glnK is activated ...

متن کامل

The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status.

The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogen...

متن کامل

Short-term regulation of nitrogenase activity by NH4+ in Rhodobacter capsulatus: multiple in vivo nitrogenase responses to NH4+ addition.

The photosynthetic bacterium Rhodobacter capsulatus has been shown to carry out nitrogenase "switch-off," a rapid, reversible inhibition of in vivo activity. Here, we demonstrate that highly nitrogen-limited cultures of both the wild-type strain and a draT draG mutant are capable of nitrogenase switch-off while moderately nitrogen-limited cultures show instead a "magnitude" response, with a dec...

متن کامل

Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus.

In R. capsulatus synthesis and activity of the molybdenum and the alternative nitrogenase is controlled at three levels by the environmental factors ammonium, molybdenum, light, and oxygen. At the first level, transcription of the nifA1, nifA2, and anfA genes--which encode the transcriptional activators of all other nif and anf genes, respectively--is controlled by the Ntr system in dependence ...

متن کامل

ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG.

Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 15  شماره 

صفحات  -

تاریخ انتشار 2002